

Clapet à simple battant Série B6 50

Clapet anti-retour à simple battant, assurant la protection des pompes ou des parties de réseaux contre l'inversion du débit.

Descriptif

- Faible perte de charge.
- Ouverture sous faible différentielle.
- Siège en inox (sauf DN 40).
- Axe en inox.
- Paliers lubrifiés.
- Chapeau démontable permettant une maintenance sans enlever le produit de la conduite.
- Protection anticorrosion par revêtement époxy intérieur/extérieur.
- Montage horizontal ou vertical ascendant.
- Version avec ou sans contrepoids.
- Version avec contrepoids :
 - Axe sortant côté gauche en standard, pour fixation du bras de levier et contrepoids.
 - Sur demande, axe sortant des deux côtés pour montage possible du bras de levier des deux cotés du clapet.
 - Modification de l'orientation du bras de levier par tranche de 90°, permettant d'influencer la fermeture du battant (fonction de la position du clapet).
 - Réglage de la sensibilité du battant en déplaçant le contrepoids sur le bras de levier.
- Options :
 - Contact fin de course (sauf DN 40).
 - Carter de protection pour bras de levier et contrepoids.
 - By-pass (sauf DN 40 à 65).

Caractéristiques

- Gamme : DN 40 à 400.
- PFA 16 du DN 40 à 300.
- PFA 10 du DN 350 à 400.
- Température d'utilisation : 0°C à + 60°C.
- Vitesse maxi : 3 m/s pour PFA 10 et 4 m/s pour PFA 16.
- Etanchéité : catégorie A suivant norme EN 12266-1.
- Dimensions face-à-face suivant normes EN 558-1 série 48 et ISO 5752 série 48.
- Perçage des brides de raccordement suivant normes EN 1092-2 et ISO 7005-2 :
 - ISO PN 10 ou 16 pour DN 40 à 300.
 - ISO PN 10 pour DN 350 et 400.

Applications

- Stations de pompage en distribution d'eau et irrigation (eau filtrée).
- Réseaux de distribution d'eau et d'irrigation (eau filtrée).
- Réseaux de protection incendie.

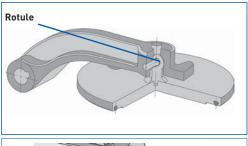
Tests

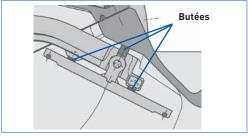
• Fabrication entièrement testée suivant norme EN 12266-1.

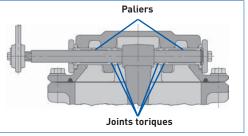
Avantages (DN 50 à 300)

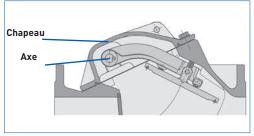
Une étanchéité durable

Dès les plus basses pressions différentielles (0,2 bar au minimum), l'étanchéité est assurée par un joint torique inséré dans un battant autocentré. L'auto-centrage du battant est obtenu grâce à une liaison de type "rotule" entre ce dernier et son bras.

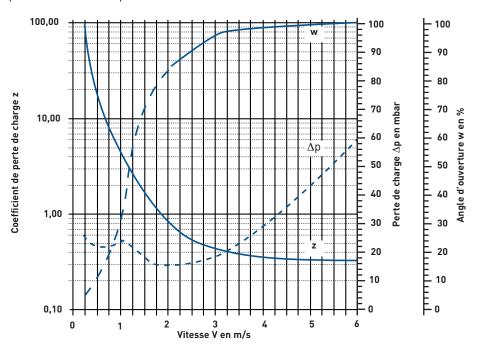

La longévité du système d'étanchéité repose sur l'utilisation d'un siège inox inséré dans le corps du clapet, dont les propriétés du matériau confère une résistance accrue face à la corrosion.


Une construction robuste


Axe de manœuvre, bras du battant et battant en inox, garantissant une résistance accrue face à la corrosion.


Bras du battant équipé de butées en élastomère afin de diminuer les bruits et chocs à la pleine ouverture.

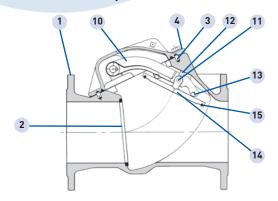
Paliers en cupro-alliage lubrifiés, assurant le guidage de l'axe en rotation tout en diminuant les efforts de frottement. Une double étanchéité, grâce à deux joints toriques, protège la zone de guidage du fluide.

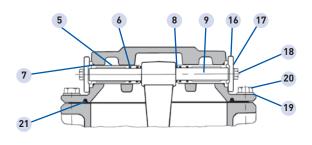


Une maintenance aisée

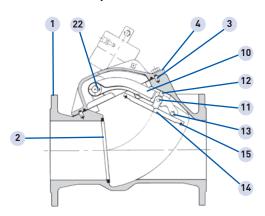
La fixation de l'axe sur le chapeau permet de sortir dans le même temps le sous-ensemble de fermeture et le chapeau. Ce dispositif facilite la maintenance en permettant un accès direct aux différents composants.

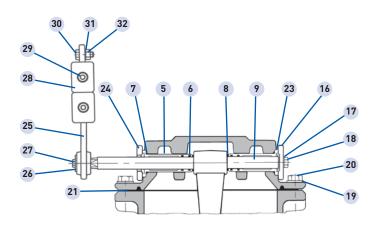
Caractéristiques hydrauliques


Elles concernent un clapet à simple battant DN 100 avec contrepoids, installé en position horizontale pour une eau à 20°C, poids à l'extrémité du bras. Ces valeurs peuvent être utilisées pour faire un calcul approximatif sur d'autres diamètres. Nous consulter pour les caractéristiques exactes des autres diamètres.

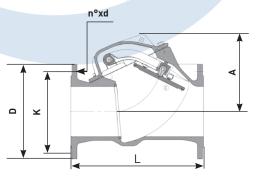


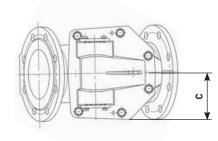
 $\Delta p = z v^2/2g$ (g = accélération de pesanteur en m/s²) avec Δp en mCE


DN 50 à 300

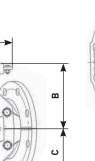

Version sans contrepoids

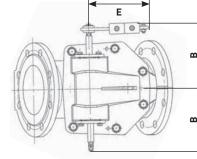
Version avec contrepoids

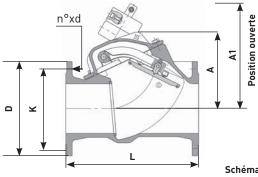


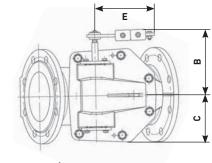

Rep.	Désignation	Nb	Matériaux	Normes
1	Corps*	1	Fonte GS/ EN-GJS-400-15	NF EN 1563
2	Siège	1	Inox 304 / X5CrNi18-10	NF EN 10088
3	Pion de centrage	2	Inox 316Ti / X6CrNiMoTi17-12-2	NF EN 10088
4	Chapeau*	1	Fonte GS/ EN-GJS-400-15	NF EN 1563
5	Palier	2	Cupro-alliage / CuZn39Pb3	NF EN 12165
6	Joint torique	4	Elastomère / NBR	
7	Joint torique	2	Elastomère / NBR	
8	Bague	2	Polyacétal / POM	
9	Axe	1	Inox 420 / X20Cr13	NF EN 10088
10	Bras du battant	1	Inox 304 / X5CrNi18-10	NF EN 10283
11	Goupille	1	Inox 430F/ X14CrMoS17	NF EN 10088
12	Butée	1	Elastomère / NBR	
13	Butée	2	Elastomère / NBR	
14	Battant	1	Inox 304/ X5CrNi18-10	NF EN 10088
15	Clapet	1	Elastomère / NBR	
16	Bride: Version sans contrepoids	2	Inox 304 / X5CrNi18-10	NF EN 10088
	Version avec contrepoids	1	Inox 304 / X5CrNi18-10	NF EN 10088
17	Rondelle	4	Inox A2	NF EN 10088
18	Vis	4	Inox A2	NF EN 10088
19	Rondelle	s/DN	Inox A2	NF EN 10088
20	Vis	s/DN	Inox A2	NF EN 10088
21	Joint corps/chapeau	1	Elastomère / NBR	
22	Clavette (version avec contrepoids)	1	Inox 316Ti / X6CrNiMoTi17-12-2	NF EN 10088
23	Circlip (version avec contrepoids)	1	Inox A2	NF EN 10088
24	Bride percée* (version avec contrepoids)	1	Inox 304 / X5CrNi18-10	NF EN 10088
25	Bras de levier* (version avec contrepoids)	1	Fonte GS/ EN-GJS-500-7	NF EN 1563
26	Rondelle (version avec contrepoids)	1	Inox A2	NF EN 10088
27	Vis (version avec contrepoids)	1	Inox A2	NF EN 10088
28	Contrepoids* (version avec contrepoids)	s/DN	Fonte GL/ EN-GJL-250	NF EN 1561
29	Vis (version avec contrepoids)	s/DN	Inox A2	NF EN 10088
30	Vis (version avec contrepoids)	1	Inox A2	NF EN 10088
31	Rondelle (version avec contrepoids)	1	Inox A2	NF EN 10088
32	Ecrou (version avec contrepoids)	1	Inox A2	NF EN 10088

Plan et nomenclature pour DN 50 à 300, autres DN nous consulter.


^{*} Revêtement époxy bleu.


Version sans contrepoids

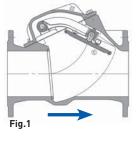


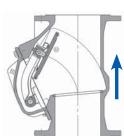

Version avec contrepoids et axe sortant des deux côtés

Version avec contrepoids

Schémas pour DN 50 à 300, autres DN nous consulter.

DN		Pe	rçage	Pe	erçage							Poids	Poids	By-pass
		ISO	PN10	IS	0 PN16							(sans CP)	(avec CP)	DN/Poids
	D	K	n°xd	K	n°xd	L	A	A1	В	C	Е			
	mm	mm		mm		mm	mm	mm	mm	mm	mm	kg	kg	mm/kg
40	150	110	4x19	110	4x19	180	115	-	-	-	-	8	-	-
50	165	125	4x19	125	4x19	200	105	226	131	74	170	10	12	-
65 percé 60	185	135	4x19	135	4x19	240	105	226	131	74	180	12	14	-
65	185	145	4x19	145	4x19	240	105	226	131	74	180	12	14	-
80 percé 4/8 trous	200	160	4x19+8x19	160	4x19+8x19	260	145	264	170	170	180	21	23	15/1,1
80	200	160	8x19	160	8x19	260	145	264	170	170	180	21	23	15/1,1
100	220	180	8x19	180	8x19	300	200	264	170	170	180	24	27	20/1,5
125	250	210	8x19	210	8x19	350	220	317	195	140	180	40	43	20/1,5
150	285	240	8x23	240	8x23	400	230	317	195	140	180	46	50	20/1,5
200	340	295	8x23	295	12x23	500	300	391	265	185	230	75	80	25/1,7
250	400	350	12x23	355	12x28	600	385	490	355	245	230	148	154	25/1,7
300	455	400	12x23	410	12x28	700	410	500	355	245	250	169	175	32/2,0
350	520	460	16x23	-	-	800	400	610	415	278	400	320	360	32/2,0
400	580	515	16x28	-	-	900	455	660	445	325	400	430	480	40/3,0


Montage


Afin d'éviter tout accident provoqué par le mouvement du bras de levier, prévoir lors du montage du matériel un système de protection conforme à la réglementation en vigueur (voir les options).

La flèche indique le sens d'écoulement du fluide, pompes en fonctionnement (même sens que la flèche sur le clapet). Montage horizontal (Fig.1) ou montage vertical ascendant (Fig.2) possible. Pour les versions avec levier à contrepoids, le système à contrepoids doit toujours assister la fermeture. En fonction de la configuration de l'installation, nous recommandons d'installer le clapet dans une zone d'écoulement établi, à une distance mini de 4 x DN des singularités (pompes, coudes, vannes, convergents, divergents, etc...).

Options

- Contact fin de course (sauf DN 40).
- Carter de protection pour bras de levier et contrepoids :
 - en plastique pour DN 50 à 300,
 - en aluminium pour DN 350 et 400.
- By-pass (sauf DN 40 à 65)

Carter pour DN 50 à 300

By pass pour DN 80 à 300

Caractéristiques et performances peuvent être modifiées sans préavis en fonction de l'évolution technique. Images et photos non contractuelles.